Atmospheric Fluctuation Measurements with the Palomar Testbed Interferometer

Roger Linfield (IPAC/Caltech)

Mark Colavita (JPL)

Ben Lane (Caltech)

and the PTI collaboration

Data Analysis

Used data from the Palomar Testbed Interferometer

single 110 m baseline

2.2 microns observing wavelength (2.0 - 2.4 μ m band)

Delay line metrology values (10 or 20 msec intervals)

Tracks the interferometer delay on timescales >100 msec

Added white light phases to delay line values ----> total phase/delay at 10 or 20 msec intervals

Subtracted a sidereal fit from all the data on each star for each night

Calculated the structure function from these residual delays

$$D_{\tau}(\Delta t) = \langle [\tau(t + \Delta t) - \tau(t)]^2 \rangle$$

Attempt to calculate outer scale/turbulent layer thickness directly was not successful (switched to an easier problem first!)

Fitted parameters: Coherence time= 33 msec Slope = 1.43

Note: The error bars represent the 1 sigma scatter about the mean value for all the scans during one night

Coherence Time vs. Spectral Slope (mean values for each night in 1999)

Seeing (θ) vs. wavelength (λ)

for
$$D_{\tau}(\Delta t) = c(\Delta t)^{\beta}$$

$$\theta = \theta_0 \lambda^{1-2/\beta}$$

Kolmogorov spectrum (
$$\beta$$
=1.67) ----> $\theta = \theta_0 \lambda^{-0.2}$

favorable PTI spectrum (
$$\beta$$
=1.30) -----> $\theta = \theta_0 \lambda^{-0.54}$

consistent with reports of superb seeing in the IR

(e.g. diffraction rings in 5 micron images from the Palomar 5 m telescope)

1999 Day 270

Angle Structure Functions: Data vs. Models 1999 Day 172 PTI UT 10.29 - 10.33

Note: The model calculations used the measured coherence time (48 msec) and spectral slope (1.39)

Derivation of ro

Two aperture variance coherence time = 48 msec (at 2.2 microns)

One aperture variance coherence time = 79 msec

Fitted wind velocity = 3 m/s

Derived coherence length = 24 cm (2.2 microns) (1.0" seeing)

Implied coherence length at 650 nm = 4.2 cm (1.7" seeing)